Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles
نویسنده
چکیده
Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles Christian Murphy Applications in the fields of scientific computing, simulation, optimization, machine learning, etc. are sometimes said to be “non-testable programs” because there is no reliable test oracle to indicate what the correct output should be for arbitrary input. In some cases, it may be impossible to know the program’s correct output a priori; in other cases, the creation of an oracle may simply be too hard. These applications typically fall into a category of software that Weyuker describes as “Programs which were written in order to determine the answer in the first place. There would be no need to write such programs, if the correct answer were known.” The absence of a test oracle clearly presents a challenge when it comes to detecting subtle errors, faults, defects or anomalies in software in these domains. As these types of programs become more and more prevalent in various aspects of everyday life, the dependability of software in these domains takes on increasing importance. Machine learning and scientific computing software may be used for critical tasks such as helping doctors perform a medical diagnosis or enabling weather forecasters to more accurately predict the paths of hurricanes; hospitals may use simulation software to understand the impact of resource allocation on the time patients spend in the emergency room. Clearly, a software defect in any of these domains can cause great inconvenience or even physical harm if not detected in a timely manner. Without a test oracle, it is impossible to know in general what the expected output should be for a given input, but it may be possible to predict how changes to the input should effect changes in the output, and thus identify expected relations among a set of inputs and among the set of their respective outputs. This approach, introduced by Chen et al., is known as “metamorphic testing”. In metamorphic testing, if test case input x produces an output f (x), the function’s so-called “metamorphic properties” can then be used to guide the creation of a transformation function t, which can then be applied to the input to produce t(x); this transformation then allows us to predict the expected output f (t(x)), based on the (already known) value of f (x). If the new output is as expected, it is not necessarily right, but any violation of the property indicates that one (or both) of the outputs is wrong. That is, though it may not be possible to know whether an output is correct, we can at least tell whether an output is incorrect. This thesis investigates three hypotheses. First, I claim that an automated approach to metamorphic testing will advance the state of the art in detecting defects in programs without test oracles, particularly in the domains of machine learning, simulation, and optimization. To demonstrate this, I describe a tool for test automation, and present the results of new empirical studies comparing the effectiveness of metamorphic testing to that of other techniques for testing applications that do not have an oracle. Second, I claim that conducting function-level metamorphic testing in the context of a running application will reveal defects not found by metamorphic testing using system-level properties alone, and introduce and evaluate a new testing technique called Metamorphic Runtime Checking. Third, I hypothesize that it is feasible to continue this type of testing in the deployment environment (i.e., after the software is released), with minimal impact on the user, and describe an approach called In Vivo Testing. Additionally, this thesis presents guidelines for identifying metamorphic properties, explains how metamorphic testing fits into the software development process, and discusses suggestions for both practitioners and researchers who need to test software without the help of a test oracle.
منابع مشابه
Automatic Detection of Defects in Applications without Test Oracles
In application domains that do not have a test oracle, such as machine learning and scientific computing, quality assurance is a challenge because it is difficult or impossible to know in advance what the correct output should be for general input. Previously, metamorphic testing has been shown to be a simple yet effective technique in detecting defects, even without an oracle. In metamorphic t...
متن کاملMetamorphic Runtime Checking of Applications without Test Oracles
Challenges arise in testing applications that do not have test oracles, i.e., for which it is impossible or impractical to know what the correct output should be for general input. Metamorphic testing, introduced by Chen et al., has been shown to be a simple yet effective technique in testing these types of applications: test inputs are transformed in such a way that it is possible to predict t...
متن کاملEmpirical Evaluation of Approaches to Testing Applications without Test Oracles
Software testing of applications in fields like scientific com-puting, simulation, machine learning, etc. is particularlychallenging because many applications in these domains haveno reliable “test oracle” to indicate whether the program’soutput is correct when given arbitrary input. A commonapproach to testing such applications has been to use a“pseudo-oracle”, in which...
متن کاملUsing Metamorphic Testing at Runtime to Detect Defects in Applications without Test Oracles Thesis proposal
Assuring the quality of applications such as those in the fields of scientific calculations, simulations, optimizations, data mining, machine learning, etc. presents a challenge because conventional software testing processes do not always apply: in particular, it is difficult to detect subtle errors, faults, defects or anomalies in many applications in these domains because there is no reliabl...
متن کاملAn Efficient Metamorphic Testing Technique Using Genetic Algorithm
Testing helps in preserving the quality and reliability of the software component thus ensuring its successful functioning. The task of testing components for which the final output for arbitrary input cannot be known in advance is a challenging task; as sometimes conditions or predicates in the software restrict the input domain Metamorphic testing is an effective technique for testing systems...
متن کامل